If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x^2-9=0
Domain of the equation: 3x^2!=0We multiply all the terms by the denominator
x^2!=0/3
x^2!=√0
x!=0
x∈R
-9*3x^2+1=0
Wy multiply elements
-27x^2+1=0
a = -27; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-27)·1
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{3}}{2*-27}=\frac{0-6\sqrt{3}}{-54} =-\frac{6\sqrt{3}}{-54} =-\frac{\sqrt{3}}{-9} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{3}}{2*-27}=\frac{0+6\sqrt{3}}{-54} =\frac{6\sqrt{3}}{-54} =\frac{\sqrt{3}}{-9} $
| 95=y+14 | | k-48=122 | | `-28=-7(3x+4)+21x` | | 5a−3a=6 | | -4-3(6x+9=41 | | z+11=49 | | k+22=57 | | |-3n+6|-9=15 | | 4(m−89)=40 | | 10x+22=6x+26 | | 3w-25=-4(w+8) | | 4(x+5)-7=6x-17 | | -3(v+4)=2v-36 | | m+13/5=4 | | 12x9=39 | | 2a/9=2/3 | | -5x11=25 | | 4u+8=100 | | x2=x+39 | | 15x=40/12 | | 34x+7=75 | | 150+10x=200+5x | | 4k+-21=51 | | m-44=103 | | 5x=465,5 | | 4k+–21=51 | | 12/x=3/22 | | 5x-54+1=180 | | .5(-8x+14)=10 | | z/8-74=-65 | | q+87=568 | | 4=5(y-4)-8y |